Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation
نویسندگان
چکیده
منابع مشابه
An Image-based Ensemble Kalman Filter for Motion Estimation
This paper designs an Image-based Ensemble Kalman Filter (IEnKF), whose components are defined only from image properties, to estimate motion on image sequences. The key elements of this filter are, first, the construction of the initial ensemble, and second, the propagation in time of this ensemble on the studied temporal interval. Both are analyzed in the paper and their impact on results is ...
متن کاملOn a Class of Shrinkage Priors for Covariance Matrix Estimation
We propose a flexible class of models based on scale mixture of uniform distributions to construct shrinkage priors for covariance matrix estimation. This new class of priors enjoys a number of advantages over the traditional scale mixture of normal priors, including its simplicity and flexibility in characterizing the prior density. We also exhibit a simple, easy to implement Gibbs sampler for...
متن کاملShrinkage Estimation of the Power Spectrum Covariance Matrix
We introduce a novel statistical technique, shrinkage estimation, to estimate the power spectrum covariance matrix from a limited number of simulations. We optimally combine an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test our technique on N-body simulations and evaluate its performance...
متن کاملEnsemble Kalman Filtering with Shrinkage Regression Techniques
The classical Ensemble Kalman Filter (EnKF) is known to underestimate the prediction uncertainty resulting from model overfitting and estimation error. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These meth...
متن کاملAdaptive cubature Kalman filter based on the variance-covariance components estimation
Although the Kalman filter (KF) is widely used in practice, its estimated results are optimal only when the system model is linear and the noise characteristics of the system are already exactly known. However, it is extremely difficult to satisfy such requirement since the uncertainty caused by the inertial instrument and the external environment, for instance, in the aided inertial navigation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ocean Dynamics
سال: 2015
ISSN: 1616-7341,1616-7228
DOI: 10.1007/s10236-015-0888-9